

ASX Announcement | 22 April 2021 Rafaella Resources Limited (ASX:RFR)

Another Set of Strong Assay Results from Santa Comba's 2021 Drill Programme

Investment Highlights

ND'

• New assays from the current drill programme at the Santa Comba Tungsten and Tin Project ('Project') have returned further extensive mineralisation both inside and outside the current resource block model.

As at 16 April 2021, a total of 33 diamond drill holes (DDH) have been completed for 5,032m at the Project.

Highlights include multiple wide, high grade zones of both tungsten and tin. Selected intersections:

- \circ ~ 11.35m @ 0.63% WO_3 and 662ppm Sn from 85.05m (21DD0012), including:
 - 1.50m @ 4.21% WO₃ and 3777ppm Sn from 94.90m
- \circ ~ 18.00m @ 0.20% WO_3 and 291ppm Sn from 61.05m (21DD0012), including:
 - 4.50m @ 0.62% WO₃ and 441ppm Sn from 62.55m
- $\circ~~$ 60.80m @ 0.15% WO_3 from 79.20m (21DD0004), including:
 - 12.00m @ 0.21% WO_3 and 57ppm Sn, from 104.00m
- $\circ~$ 24.2m @ 0.26% WO_3 and 75ppm Sn, from 101.60m (21DD0008), including:
 - 15.20m @ 0.37% WO₃, from 104.60m or
 - 1.50m @ 2.60% WO₃, and 112ppm Sn from 118.30m

Results continue to demonstrate:

- that the eastern ore zone (sections 1270, 1310 and 1360) is an excellent target for additional resources in the measured/indicated categories;
- that the eastern and central ore zones merge into one single, wider ore zone at depth (section 1310);
- o the depth continuity of higher-grade veins for expansion of the historic underground mine; and
- that significant expansion potential of the near-surface resources exists to the south.

• Continued good drill performance will keep the programme on schedule to be completed by the end of April and with an updated JORC (2012) Mineral Resource Estimate planned for 2Q 2021.

Managing Director Steven Turner said: "The 2021 drill campaign at our Santa Comba Project continues to kick goals. It has firmed up our belief in the attractiveness of this deposit. The step-out drillholes in the current campaign are shedding still more light on the potential that exists across the Project's largely undrilled granite massif. These assays with wide high-grade intercepts, take us another step towards a JORC upgrade, which would in turn enhance the already robust economics of the Project. All this at a time when a host of Western countries are searching for a stable long-term source of tungsten supply as concerns continue to grow regarding the dependence upon Chinese supplies."

Rafaella Resources Limited (ASX:RFR) ("Rafaella" or "the Company") is pleased to announce that further assay results from the 2021 diamond drill campaign have been received. This drilling campaign is targeted at better defining and expanding the existing Mineral Resource Estimate ('**MRE**') of 10.6Mt at 0.17% WO₃ and 154ppm Sn for a total contained metal of 18,532t of WO₃ and 1,629t Sn.¹

The now extended 2021 drill programme is fulfilling our objectives

The planned 2021 drill programme of 4,500m has been extended by over 1,000m for a total of over 5,500m due to good visual mineralisation being encountered across several zones.

The drill programme was designed with the main objectives of:

- I. Converting near-surface higher grade inferred resources (averaging 0.18% WO₃), into measured/ indicated categories.
- II. Expanding current near-surface resources by means of step-out drilling and subsequently through in-fill drilling, converting to measured/indicated categories, and

III. Confirming depth continuity of the high-grade vein mineralisation amenable for underground (UG) mining.

Two (2) diamond drill rigs are currently in operation at the Project with one (1) already demobilised from site. To date, Rafaella has completed 33 diamond drill holes for over 5,000m.

Assays for drillholes 21DD0004 to 21DD00013 and for 20GTF003 (geotechnical drillhole drilled in 2020) have been received from the SGS laboratory (Table 1).

Hole ID		From (m)	To (m)	Interval (m)	WO3 %	Sn ppm	T.T. factor
21DD0004		46.50	69.90	21.90 ^{1*}	0.105	118	0.80
	including	46.50	49.50	3.00	0.196	84	0.80
	and	62.20	63.90	1.70	0.225	76	0.80
		79.20	140.00	60.80	0.147	81	0.80
	including	81.40	92.00	10.60	0.190	54	0.80
	and	104.00	116.00	12.00	0.207	57	0.80
	and	125.00	140.00	15.00	0.170	54	0.80
		149.00	152.00	3.00	0.091	10	0.80
21DD0005		20.50	25.50	5.00	0.070	124	0.90
		35.10	53.10	18.00	0.076	91	0.90
21DD0006		10.05	11.50	1.45	0.186	65	0.80
		39.40	65.30	22.90 ^{2*}	0.093	82	0.80
	including	42.40	50.40	8.00	0.114	75	0.80
		74.30	86.30	12.00	0.085	203	0.80
	including	80.30	83.30	3.00	0.122	411	0.80
		107.30	117.40	10.10	0.089	108	0.80
20GTF003		10.25	19.25	9.00	0.098	79	0.50
	including	10.25	13.25	3.00	0.192	68	0.50
		47.45	66.95	19.50	0.181	121	0.40
	including	47.45	53.45	6.00	0.244	106	0.40
	and	63.95	66.95	3.00	0.264	270	0.40

Table 1. Assays from Santa Comba 2021 drilling programme

¹ Refer to ASX announcement 1 July 2020 "Rafaella Resources announces significant Mineral Resource Estimate upgrade."

21DD0008		4.75	6.25	1.50	1.164	1075	0.60
		68.30	71.30	3.00	0.215	558	0.60
		77.30	80.30	3.00	0.106	464	0.60
		83.60	92.60	9.00	0.069	96	0.60
		101.60	125.80	24.20	0.258	75	0.60
	including	104.60	119.80	15.20	0.374	83	0.60
		143.80	152.80	9.00	0.132	65	0.60
	including	143.80	146.80	3.00	0.307	71	0.60
		161.80	164.80	3.00	0.052	59	0.60
21DD0009		28.85	60.00	31.15	0.114	124	0.75
	Including	31.85	54.00	22.15	0.135	123	0.7
		72.90	78.90	6.00	0.120	103	0.75
	Including	72.90	75.90	3.00	0.148	139	0.75
		84.90	133.75	48.85	0.136	89	0.75
	including	84.90	123.90	39.00	0.156	100	0.7
21DD0010		50.10	51.60	1.50	0.997	1886	0.80
		63.60	67.60	4.00	0.057	111	0.80
		78.40	87.40	9.00	0.128	342	0.80
	Including	78.40	81.40	3.00	0.191	534	0.8
		99.95	105.05	5.10	0.119	79	0.80
	Including	102.95	105.05	2.10	0.199	69	0.8
		126.00	129.00	3.00	0.093	180	0.80
		138.00	141.00	3.00	0.082	86	0.8
		194.45	200.45	6.00	0.067	364	0.80
21DD0011		35.70	41.70	6.00	0.128	719	0.70
	Including	35.70	37.20	1.50	0.417	55	0.7
		52.10	65.60	9.00 ^{3*}	0.059	108	0.70
		74.60	77.60	3.00	0.068	67	0.70
21DD0012		61.05	79.05	18.00	0.201	291	0.70
	Including	61.05	67.05	6.00	0.301	592	0.7
		85.05	96.40	11.35	0.625	662	0.70
	Including	94.90	96.40	1.50	4.207	3777	0.7
		102.40	134.00	31.60	0.139	70	0.7
	Including	114.00	116.00	2.00	0.816	249	0.7
		143.00	152.00	9.00	0.089	41	0.70
	Including	149.00	152.00	3.00	0.127	41	0.7
		157.00	174.00	17.00	0.072	43	0.70
	Including	165.00	168.00	3.00	0.130	49	0.7
21DD0013		51.80	53.30	1.50	1.930	88	0.70
		62.25	63.20	0.95	0.257	222	0.70

Intervals are down hole intersections. True thicknesses (T.T factor) are estimated individually through cross sections. Weighted average grades calculated for intervals >0.05% WO3; maximum of 6m of internal dilution; no top-cuts applied.

1* Void corresponding to old working, from 59.20 to 60.70 m has been excluded for the interval

2* Void corresponding to old working, from 52.00 to 55.00 m has been excluded for the interval

3* Void corresponding to old working, from 58.10 to 62.60 m has been excluded for the interval

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Hole depth
21DD0001	514,565.92	4,771,258.95	419.71	288	-60	163.70
21DD0002	514,562.34	4,771,103.28	419.33	288	-45	157.75
21DD0003	514,563.05	4,771,103.01	418.90	288	-65	125.10
21DD0004	514,564.71	4,771,259.31	419.70	288	-45	152.00
21DD0005	514,543.84	4,771,149.25	420.33	288	-45	54.45
21DD0006	514,561.98	4,771,137.69	420.20	288	-60	117.40
21DD0007	514,552.80	4,771,225.56	420.75	288	-62	40.60
21DD0008	514,580.62	4,771,292.60	419.33	288	-60	206.40
21DD0009	514,552.23	4,771,225.73	420.93	288	-45	180.00
21DD0010	514,613.54	4,770,993.70	420.01	288	-45	210.10
21DD0011	514,563.04	4,771,186.26	419.68	288	-60	98.10
21DD0012	514,572.69	4,771,223.55	420.22	288	-55	206.65
21DD0013	514,587.67	4,771,054.42	419.57	288	-45	63.20
20GTF003	514,530.79	4,771,528.04	442.71	30	-60	150.50

Table 2. Drill hole collar details (Datum: ETRS89 UTM Zone 29 (EPSG: 3041).

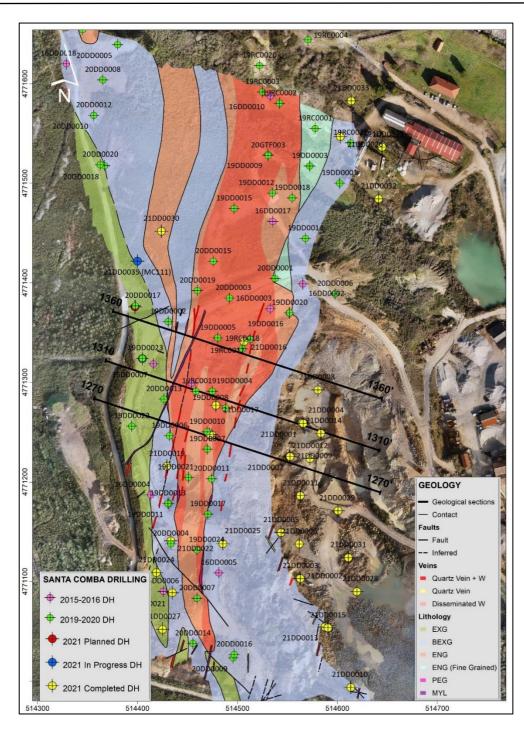


Figure 1. Shows the surface geological map of the Santa Comba Tungsten deposit with the location of the 3 cross sections 1270, 1310 and 1360 with all drill collars drilled up to date in the project.

Strong mineralisation confirmed in eastern ore zone

The first drillhole drilled in section 1310 in 2021 was 21DD0001 (figure 2) for which assay results were revealed in the ASX announcement dated 31 March 2021². Drillhole 21DD0004 was the second drilled in section 1310, immediately above 21DD0001 (figure 2), and it has confirmed the strong mineralisation in the eastern ore zone, with an intercept of 60.80m at 0.15% WO₃, including 10.60m at 0.19% WO₃, 12.00m at 0.21% WO₃ and 15.00m at 0.17% WO₃.

² Refer to ASX announcement dated 31 March 2021 "Strong Mineralisation in First Assays of Santa Comba 2021 Drill Campaign."

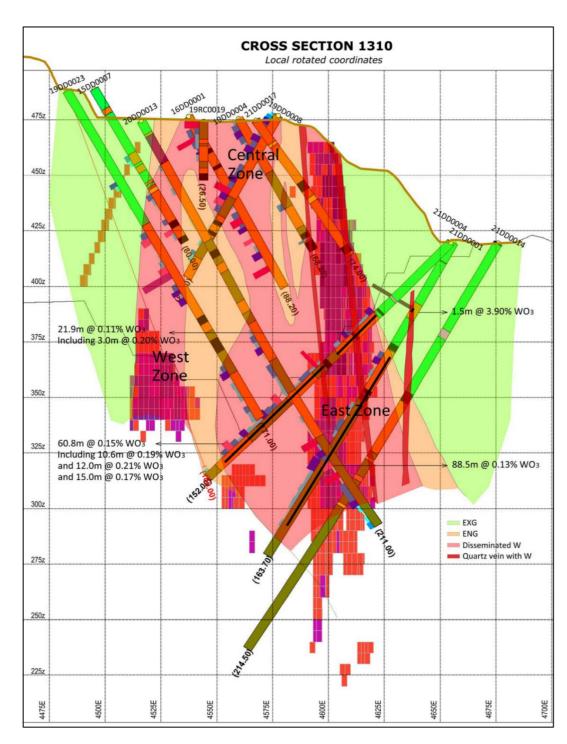


Figure 2. Cross section 1310 showing all drillholes (W grade in bars) and intercept details only for 21DD0004. Note that previous drilling did not reach the eastern zone except for 20DD0013, which generated inferred blocks (for the most part falling inside the pit of the 2020 pre-feasibility study)³ which are now being targeted by 2021 drilling programme.

With the objective of checking the mineralisation intersected with drillholes 21DD0004 and 21DD0001, both at depth and above, two further drillholes have been completed (21DD0014 and 21DD0017 respectively) for which assay results are pending, although visual estimates of disseminated wolframite suggests good continuity of the mineralisation both up and down dip. In this section, the central and eastern mineralised ore zones merge at depth into a single and wider zone.

³ Refer to ASX announcement dated 2 December 2020 "Santa Comba PFS demonstrates Exceptional Economics with Assignment of Ore Reserves".

To the south is section 1270 with 21DD0009 and the undercut 21DD0012 (figure 3). For the upper drill hole (21DD0009) assays returned intercepts of 31.15m at 0.11% WO₃ from 28.85m and 48.85m at 0.14% WO₃, including 39.00m at 0.16% WO₃ of which 6.00m contained 0.22% WO₃. The undercut (21DD0012) also returned strong assay results of 18.00m at 0.20% WO₃ and 291 ppm Sn from 61.05m, 11.35m at 0.63% WO₃ and 662ppm Sn from 85.05m, including 1.50m at 4.21% WO₃ and 3,777ppm Sn and an intercept of 31.60m at 0.14% WO₃.

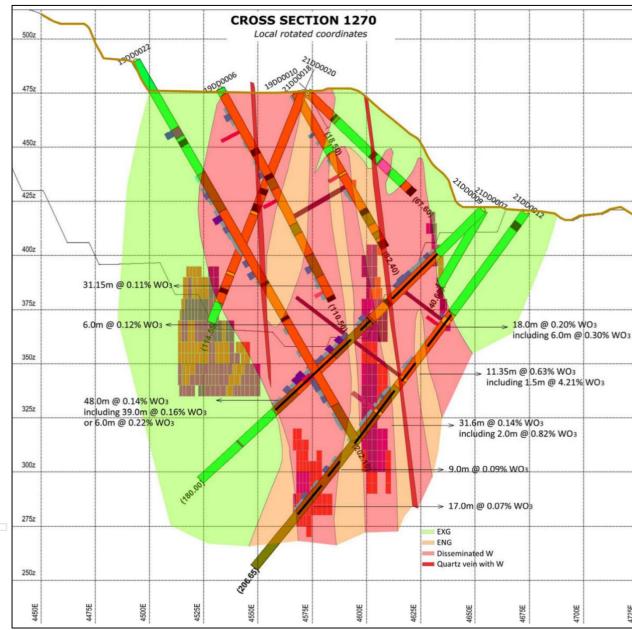


Figure 3. Cross section 1270 (40m south of section 1310) showing all drillholes (W grade in bars) and intercepts only for 21DD0009 and 21DD0012. Note that in this section the eastern zone was never drilled before the current drill programme.

Figure 4. Endogranite with clusters of millimetric crystals of disseminated wolframite and minor cassiterite (21DD0008, 68.40m). This sample returned 0.22% WO3 and 558ppm Sn over 3.00m.

Figure 5. Quartz vein with large crystals of wolframite hosted in tourmaline bearing endogranite (21DD0008, from 119.05m). This sample returned 2.59% WO3 and 112ppm Sn over 1.50m.

This announcement has been authorised by the Board of Directors of the Company.

		Table 3. Al	ll 2019-20 di	rill hole assa	y data.		
Hole ID	Prospect		From (m)	To (m)	Interval (m)	WO₃ %	Sn ppm
19RC0016	Kaolin		36.00	39.00	3.00	0.079	67
			60.00	75.00	15.00	0.074	76
19RC0017	Quarry		3.00	15.00	12.00	0.125	255
			24.00	81.00	57.00	0.142	114
		including	24.00	30.00	6.00	0.521	338
		and	60.00	63.00	3.00	0.502	131
19RC0018	Quarry		0.00	69.00	69.00	0.081	121
		including	3.00	9.00	6.00	0.206	148
		and	24.00	36.00	12.00	0.130	186
19RC0019			0.00	18.00	18.00	0.138	97
		including	0.00	3.00	3.00	0.402	70
19RC0020	Kaolin			NSA			
19DD0017	Quarry		0.00	3.00	3.00	0.158	147
15000017	Quarry		71.50	73.00	1.50	2.118	42
	-		85.00	100.00	15.00	0.080	139
			109.00	130.00	21.00		
		including				0.108	113
10000010	Demilence	including	118.00	127.00	9.00	0.167	135
19DD0019	Barrilongo		6.00	12.00	6.00	0.097	79
			21.00	24.00	3.00	0.102	67
			45.00	48.00	3.00	0.072	54
			77.25	78.75	1.50	0.146	613
			105.75	111.40	5.65	0.426	1,957
		including	108.40	109.90	1.50	1.158	5,600
19DD0021	Quarry		25.50	27.00	1.50	0.651	91
			65.00	66.80	1.80	0.146	93
			90.70	92.85	2.15	0.062	69
19DD0022	Quarry		36.00	39.00	3.00	0.223	67
			60.00	118.10	58.10	0.101	137
		including	78.00	93.00	15.00	0.146	267
			141.20	144.20	3.00	0.087	52
			153.20	198.20	45.00	0.103	79
		including	165.20	180.20	15.00	0.182	100
19DD0023	Quarry		46.60	50.60	4.00	0.159	148
			69.70	109.70	40.00	0.185	87
		including	90.70	104.70	14.00	0.315	122
		including	90.70	96.70	6.00	0.569	111
		5	142.10	171.00	28.90	0.110	91
		including	145.10	148.10	3.00	0.240	185
19DD0024	Quarry		6.70	24.00	17.30	0.083	99
1000001	Quanty	including	6.70	9.00	2.30	0.308	112
		mendaling	55.00	58.00	3.00	0.085	75
20DD0001	Quarry		0.00	3.00	3.00	0.103	69
20000001	Quarry		10.80	89.00	78.20	0.152	135
		including	10.80 10.80	34.80	24.00	0.132 0.281	249
		including	22.80	31.80	9.00	0.529	419
		menuumy	158.00		3.00	0.199	
20DD0002	Barrilongo		36.00	161.00 39.00	3.00	0.199	96 56
20DD0003	Quarry	including	1.60	71.50	69.90	0.129	74
		including	1.60	7.60	6.00	0.349	70
		and	21.30	24.30	3.00	0.387	71
		and	42.30	47.30	5.00	0.225	74
		and	65.50	68.50	3.00	0.228	69 (1
			98.50	101.50	3.00	0.081	61
			109.70	145.70	36.00	0.075	72
			160.70	163.70	3.00	0.291	3190
20DD0004			42.00	45.00	3.00	0.050	83
20000004	Quarry		42.00				
2000004	Quarry	including	42.00 57.00 66.00	72.00 69.00	15.00 3.00	0.030 0.158 0.367	172 498

Table 3. All 2019-20 drill hole assay data.

20DD0005	Barrilongo		20.80	35.80	15.00	0.055	66
	_		62.80	65.80	3.00	0.051	69
			77.80	80.80	3.00	0.068	67
			101.80	104.80	3.00	0.052	81
			113.80	125.80	12.00	0.125	289
20DD0006	Quarry		97.70	118.20	20.50	0.125	52
		including	103.70	106.70	3.00	0.411	62
			126.10	129.10	3.00	0.057	66
			143.50	149.50	6.00	0.106	57
			158.50	164.50	6.00	0.106	49

Table 3. All 2019-20 drill hole assay data (continued).

Hole ID	Prospect		From (m)	To (m)	Interval (m)	WO₃ %	Sn ppm
20DD0007	Quarry		26.00	33.50	7.50	1.308	84
		including	26.00	30.50	4.50	1.334	97
		and	32.00	33.50	1.50	2.490	73
			41.00	42.50	1.50	0.511	111
			71.00	72.50	1.50	0.255	80
			137.00	140.00	3.00	0.054	69
			152.00	155.00	3.00	0.314	199
			167.00	170.00	3.00	0.055	57
20DD0008	Barrilongo		28.50	49.50	21.00	0.059	89
			58.50	61.50	3.00	0.055	63
			94.50	97.50	3.00	0.294	60
20DD0009	Quarry		24.50	27.50	3.00	0.122	30
	20007		74.20	77.20	3.00	0.571	34
	-		89.20	92.20	3.00	0.058	39
20DD0010	Barrilongo		28.00	31.00	3.00	0.111	77
			64.00	76.00	12.00	0.071	81
	-		85.00	91.00	6.00	0.200	70
			100.00	103.00	3.00	0.062	69
20DD0011	Quarry		20.00	22.00	2.00	0.058	79
20220011	Quarry		93.20	96.20	3.00	0.058	86
20DD0012	Barrilongo		27.70	30.70	3.00	0.359	36
			54.70	56.70	2.00	0.078	71
2000012	Quarra						
20DD0013	Quarry		21.50	36.50	15.00	0.067	112
	-		48.50	51.50 139.00	3.00	0.052	84
	-		106.00		33.00	0.102	86
		including	151.00 <i>163.00</i>	211.00 <i>184.00</i>	60.00 <i>21.00</i>	0.150 <i>0.237</i>	64 69
		and	187.00	199.00	12.00	0.181	65
20DD0014	Quarry	unu	27.40	33.40	6.00	0.531	110
20000014	Quarry	including	27.40	30.40	3.00	0.951	121
	-	menuumg	106.00	109.00	3.00	0.135	50
20DD0015	Quarry		0.00	27.00	27.00	0.092	101
20000015	Quarry	including	21.00	27.00	6.00	0.141	169
		mendanig	39.00	45.00	6.00	0.066	58
	-		81.30	98.30	17.00	0.067	75
			107.30	143.30	36.00	0.066	82
20DD0016	Quarry		46.20	49.20	3.00	0.112	80
20DD0010 20DD0017	Quarry		82.30	106.30	24.00	0.112	80
	2		118.30	160.30	42.00	0.105	69
		including	121.30	130.30	9.00	0.191	67
			175.30	209.00	33.70	0.103	70
		including	175.30	181.30	6.00	0.184	99
		and	199.30	209.00	9.70	0.139	59
			218.00	221.00	3.00	0.072	71
	†		230.00	233.00	3.00	0.085	70
	†		287.00	302.00	15.00	0.050	61
20DD0018	Barrilongo		91.60	106.30	14.70	0.109	84
		including	103.60	106.30	2.70	0.222	182
	†		113.80	122.80	9.00	0.085	73
	I L					2.300	

20DD0019	Quarry		12.40	21.40	9.00	0.063	85
			39.40	54.00	14.60	0.066	106
			61.40	97.40	36.00	0.071	80
			106.40	127.40	21.00	0.057	108
			163.40	172.40	9.00	0.153	57
		including	163.40	166.40	3.00	0.366	58
20DD0020	Barrilongo		32.00	34.00	2.00	0.061	54

Intervals are down hole intersections. True thicknesses are estimated to be 50-60% of down hole intervals. Weighted average grades calculated for intervals >0.05% WO_3 ; maximum of 6m of internal dilution; no top-cuts applied.

Table 1 All 2010 2020 Duill bala sellen detaile	(Data and FTDC00 LITA 7 20 (FDCC 2044)
Table 4. All 2019-2020 Drill hole collar details	(Datum: ETRS89 0 TN Zone 29 (EPSG: 3041).

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Hole depth
19RC0016	514,562	4,771,687	431.9	294.5	-60	171.0
19RC0017	514,513	4,771,343	460.6	288.5	-60	91.0
19RC0018	514,505	4,771,334	461.3	2.5	-90	90.0
19RC0019	514,459	4,771,291	474.8	2.5	-90	26.5
19RC0020	514,522	4,771,618	428.3	292.5	-59	78.0
19DD0017	514,471	4,771,168	489.8	108.5	-60	141.2
19DD0019	514,345	4,771,655	477.0	113.6	-60	114.4
19DD0021	514,451	4,771,205	479.0	109.5	-63	128.7
19DD0022	514,394	4,771,256	490.4	108.5	-60	202.1
19DD0023	514,405	4,771,324	488.6	108.5	-59	171.0
19DD0024	514,460	4,771,132	490.5	108.5	-60	113.3
20DD0001	514,538	4,771,404	464.0	288.5	-60	166.5
20DD0002	514,358	4,771,689	471.2	112.5	-60	139.0
20DD0003	514,492	4,771,385	474.9	288.5	-60	176.3
20DD0004	514,433	4,771,138	491.5	108.5	-60	164.3
20DD0005	514,380	4,771,640	469.2	112.5	-60	168.8
20DD0006	514,598	4,771,389	452.6	290.5	-60	164.5
20DD0007	514,460	4,771,083	503.8	107.5	-60	176.6
20DD0008	514,365	4,771,604	474.1	112.0	-60	140.0
20DD0009	514,496	4,771,023	502.9	108.0	-60	155.3
20DD0010	514,356	4,771,568	481.4	112.0	-60	115.0
20DD0011	514,474	4,771,203	480.8	108.0	-60	106.0
20DD0012	514,356	4,771,568	481.4	297.5	-60	61.0
20DD0013	514,427	4,771,283	475.2	108.0	-60	211.0
20DD0014	514,456	4,771,038	504.0	108.0	-60	115.0
20DD0015	514,476	4,771,422	479.3	282.0	-60	149.0
20DD0016	514,497	4,771,027	503.0	289.0	-60	95.7
20DD0017	514,398	4,771,377	498.2	108.0	-60	302.0
20DD0018	514,367	4,771,518	486.3	112.5	-60	155.0
20DD0019	514,460	4,771,392	485.9	108.0	-60	212.5
20DD0020	514,363	4,771,519	487.4	292.5	-60	73.0

For further information, please contact:

Rafaella Resources

Steven Turner, Managing Director Ph: +61 (08) 9481 0389 E: info@rafaellaresources.com.au

Media & Investor Enquiries

Julia Maguire, The Capital Network Ph: +61 419 815 386 E: julia@thecapitalnetwork.com.au

About Rafaella Resources

Rafaella Resources Limited (ASX:RFR) is an explorer and developer of world-class mineral deposits. Rafaella owns the Santa Comba tungsten and tin development project in Spain, as well as the McCleery cobalt-copper project and the Midrim and Laforce high-grade nickel-copper-PGE sulphide projects in Canada. Santa Comba is located in a productive tungsten and tin province adjacent to critical infrastructure. The McCleery project was previously under-explored and holds significant potential. The Midrim and Laforce projects have had extensive drilling with some exciting intersections and offer significant upside for the Company.

To learn more please visit: www.rafaellaresources.com.au

Competent Person Statement

The information in this announcement that relates to Exploration Results and Historical Estimates is based on, and fairly represents, information and supporting documentation compiled under the supervision of Lluis Boixet Martí, a consultant to the Company. Lluis Boixet Martí holds the title of European Geologist (EurGeol), a professional title awarded by the European Federation of Geologists (EFG). EFG is a 'Recognised Professional Organisations' (ROPO) by the ASX, an accredited organisation to which Competent Persons must belong for the purpose of preparing reports on Exploration Results, Mineral Resources and Ore Reserves under the JORC (2012) Code. Lluis Boixet Martí consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Forward Looking Statements Disclaimer

This announcement contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Appendix 1. JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Principal samples in the 2015-2016 and 2019 drill programs were derived from diamond drill core. Other sample types include RC drill chips (RFR & GTT), surface rock chip (GTT & Incremento Grupo Inversor (IGI)) and underground channel sampling along adits (GTT) and historic underground channel sampling completed by Coparex during sublevel drive development and gallery (stope) exploitation. See ASX announcement 1 July 2020. Samples from 2021 drill program are derived from diamond drill core (½ of HQ core or ¼ of PQ core with approximate weight of 4-5 Kg per meter sampled).
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling contractors for the 2015-2016 drill programme: SPI (Sondeos y Perforaciones Industriales del Bierzo (León)). Drill rig SPI DRILL 160-D (made by SPI); 24 holes for 2,481m. Diamond drilling contractors for the 2019 drill programme: Geonor (La Coruna). Drill rig Atlas Copco CS-14C. Diamond drilling contractors for the 2021 drill programme: SPI (Sondeos y Perforaciones Industriales del Bierzo (León)). Drill rig SPI DRILL 160-D (made by SPI). Reverse Circulation (RC) contractors for the 2015-2016 drill programme: EDASU (Madrid). Drill rig: EDASU RCG 2500 (made by EDASU); 3 drill holes for 255m. Reverse Circulation (RC) contractors for the 2019 drill programme: SPI (Sondeos y Perforaciones Industriales del Bierzo (León)). Drill rig SPI DRILL 160-D (made by SPI). The primary sample database for the 2015-2016 drill programme contains data from 27 surface drill holes. 23 of these drill holes were used in the MRE (3 RC drill holes for 255m; 20 diamond drill holes for 2,020m).

Criteria	JORC Code explanation	Commentary
		The primary sample database for the 2019 drill programme contains data from
		surface drill holes (diamond drilling and RC drilling).
		• For both drill programmes, diamond core was mostly HQ size. Holes were collared
		using PQ size. Only NQ was used when no voids were encountered.
		 A similar approach is carried out for 2021 programme.
		 For the 2015-2016 drill programme, diamond core was oriented with spear marks
		every 9m. No core was oriented during the 2019 drill programme, except for 3
		geotechnical drillholes 20GTF001, 20GTF002 and 20GTF003, that had been oriented with DEVI CORE BTT.
		 In the Coparex era of underground mining, no information is known about the
		drilling techniques.
Drill sample	 Method of recording and assessing core and chip sample 	 Recovery measured directly from drilled length by a geologist.
recovery	recoveries and results assessed.	 Core recovery was very high, generally greater than 98%.
	 Measures taken to maximise sample recovery and ensure 	• For the 2019 RC drill programme, sample recovery was greater than 90%.
2	representative nature of the samples.	 Sample collection was supervised by a site geologist who ensured samples were
))	 Whether a relationship exists between sample recovery and 	representative and recovery was acceptable for resource estimation.
Ð	grade and whether sample bias may have occurred due to	 There was no evidence of sample bias or any relationship between sample
6	preferential loss/gain of fine/coarse material.	recovery and grade.
2		 For the 2021 drill programme, currently in progress, the same methodology is applied.
Logging	• Whether core and chip samples have been geologically and	 In 2019/20 the core was logged to a level of detail to support a MRE.
	geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	 For the 2015-2016 drill programme all core was orientated with a spear mark at intervals of 9m. Orientation lines were marked on the core.
	studies.	 Logging was completed recording lithology, mineralogy, veining, textures and
5	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	alteration features. A coded logging procedure was implemented. UV light was run over all core in order provide an indication of scheelite.
	• The total length and percentage of the relevant intersections	 Logging was both qualitative and quantitative.
	logged.	• All drill core and RC drill chips were photographed.
		 In both drillhole databases, 99% of the core & RC chips from the drilling has been logged.
		• For the 2021 the same techniques are applied.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For all drill programmes, selected core samples were sawn longitudinally such that one ½ core was sent to the laboratory. The 2015-2016 drill core was oriented so that the same side taken for sampling down each hole. ¼ core was only taken from PQ core. Sample length maximum is 3m, then smaller for lithological changes. The majority of samples were 3m in length. 3m length samples of ½ HQ core weighed approximately 15kg. In the 2015-2016 drill programme, limited reverse circulation drilling was undertaken at Eliseo and Santa Maria prospects. In the 2019 drill programme, limited RC drilling was undertaken at the Kaolin and Eliseo prospects. No RC drilling is planned for 2021. For the RC drilling, 1m samples were passed through a standard splitter and the subsamples combined into 3m composites. Samples were sent to ALS in Seville for sample preparation (DRY-21, CRU-31, SPL-22Y, PUL-32). Pulps were sent to ALS's Canadian facilities for analysis. Surface rock chip and underground channel sampling completed by GTT were collected using either pick and shovel or a portable air-driven jackhammer. Samples were crushed on site with a jaw crusher to <i>ca</i>10mm and then passed through a standard splitter. Approximately 2kg sub-samples were collected for analysis. Course duplicates, produced by ALS using a Boyd rotary splitter, show a good correlation between original and duplicate samples. It is considered that the sample sizes used are appropriate for the mineralisation at Santa Comba. For the 2021 drill programme, samples are sent to SGS Huelva for preparation (PRP95) and pulps are sent to SGS's Canadian facilities.
		and pulps are sent to SGS's Canadian facilities.

	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No external verification done. All the 2015-16 and 2019-2020 QC data was reviewed by Dr Lachlan Rutherford (Project Manager, GTT; GM Exploration, RFR) who is a Competent Person under the JORC Code (2012) and was a consultant to both companies. No specific twin holes were drilled. Primary data for the 2015-2016 and 2019 drilling campaigns was entered and maintained in an Excel database. Any problems encountered during the hole data import, combination and surveying process were resolved with company geologists. No top-cuts were applied. All QC data for the 2021 drill programme is reviewed by Lluis Boixet Martí, who hold title of European Geologist (EurGeol), a professional title awarded by the European Federation of Geologists (EFG). EFG is a 'Recognised Professional Organisations' (ROI by the ASX, an accredited organisation to which Competent Persons must belong for purpose of preparing reports on Exploration Results, Mineral Resources and Ore Reserves under the JORC (2012) Code.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 For previous drill campaigns refer to ASX announcement dated 1 July 2020. For the 2021 drill programme, all drill collars are surveyed by means of GPS LEICA Grife Drillhole collar coordinates and final depth for 2021 drill are: Hole ID Easting Northing Elevation Hole depth (m) 21DD0001 514,565.92 4,771,258.95 419.71 163.70 21DD0002 514,562.34 4,771,103.28 419.33 157.75 21DD0003 514,563.05 4,771,103.01 418.90 125.10 21DD0004 514,564.71 4,771,259.31 419.70 152.00 21DD0005 514,543.84 4,771,149.25 420.33 54.45 21DD0006 514,561.98 4,771,225.56 420.75 40.60 21DD0008 514,580.62 4,771,292.60 419.33 206.40 21DD0009 514,552.23 4,771,225.73 420.93 180.00 21DD0010 514,613.54 4,770,993.70 420.01 210.10 21DD0011 514,563.04 4,771,186.26 419.68 98.10 21DD0012 514,572.69 4,771,223.55 420.22 206.65 21DD0013 514,587.67 4,771,054.42 419.57 63.20 20GTF003 514,530.79 4,771,528.04 442.71 150.50 Coordinate system: ETRS89, UTM, ZONE 29.

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 For previous drill programme spacing refer to ASX announcement dated 1 July 2020. The 2021 drill programme is targeting Measured and Indicated classification with spacings of no greater than 40m. Restricted by quarry access. It is considered that the spacing of samples used is sufficient for defining Mineral Resource Estimates.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is not considered that the sampling orientations have introduced any sampling bias.
Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	 Sample security was managed by the Company. Each composite sample was double-bagged, cable-tied and then inserted into a polyweave bag and cable tied again. Each batch of samples was sent directly to Seville by courier with appropriate chain of custody information. For 2021 drill campaign, the same procedure is applied, although the samples are sent
/)_)		to SGS prep lab at Huelva instead of ALS as in earlier drill campaigns.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	None.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The following table lists the concessions and extensions that make up the Santa Comba Project. The licences were fully transferred into the name of GTT by the Mines Department in November 2015. The licences have an expiry date of 2068. <u>Foncession Santa Maria</u> 1790 6/09/1943 24/02/1978 24/02/2068 1,000,000 Concession Oportuna 1792 6/09/1943 24/02/1978 24/02/2068 1,000,000 Concession Santa Bárbara 1801 4/10/1943 24/02/1978 24/02/2068 4,000,000 Concession Santa Bárbara Concession Carballeira 1801 4/10/1943 24/02/1978 24/02/2068 16,880,000 Concession Carmen 1802 4/10/1943 24/02/1978 24/02/2068 16,880,000 Concession Ampliación a Oportuna 2912 28/05/1949 24/02/1978 24/02/2068 180,000 Excesses Demasía a Santa Maria TP90 12/03/1990 24/02/2068 178,560 Excesses Primera Demasía Oportuna 1792 12/03/1990 24/02/2068 226,450 Excesses Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03/1990 24/02/2068 2,004,912 Excesses Primera Demasía a Carballeira 1801 12/03
5		Excesses Demasía a Ampliación a Oportuna 2912 12/03/1990 24/02/2068 94,795 36,058,887 The licences are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Santa Comba was mined intermittently between 1940 – 1985 with considerable underground infrastructure developed (<i>ca.</i> 7,000m). Much of the understanding about deposit and vein geometry was developed between 1980 - 1985 by French company Coparex. There is a list from the Coparex era of 230 diamond drillholes. For these holes, 79 vein intersections have recorded WO₃ and Sn assays. However, this database does not contain any collar coordinates or survey data, and so cannot be processed or included in the mineral resource estimate. The working long sections of each vein used by the mine in the Coparex era do show drillhole intersections, with intersected thicknesses and grades. They are also shown in plan projections, but there are no complete sets of sections showing the drillhole data. The log section intersection data have been used in historic resource calculations. There is no proper database of historical drillhole data. Discussions with a Coparex geologist confirmed that during the period of underground production, the drillholes were logged and mineralised zone intersections were assayed gravimetrically using the on-site laboratory. However, the principal use of drillholes was using quartz intersections to help with vein interpretation and subsequent underground development and exploration. In 2012, IGI assessed the open pit potential of Santa Comba using rock chip sampling. Channel sampling and single site sampling showed elevated tungsten concentrations. Channel sampling in the quarry area assayed 14m @ 0.11% WO3 and highlighted the

Criteria	JORC Code explanation	Commentar	2					
				ungsten potent sed by IGI were			-	
Geology	Deposit type, geological setting and style of mineralisation.	containe minerali The geo Orogen. crustal b by 1-2kn Tungster dissemin through mining. I	a mineral of ecor d within, and sation is also pre- ogy is the Galici The Galicia-Tra- lock thrusted ow a wide massif co a-tin mineralisat ated in the end but the majority Disseminated tu	adjacent to, a valent throughd ia-Tras-Os-Mon s-Os-Montes Zo er the Central I mposed of syn- ion at Santa Co logranite. The o of the massif. ngsten minerali	a two-mica but the area tes Zone in one is a com berian Zone. to post-tecto mba occurs i quarz vein-h The vein m sation is hos	granite (enc and was the r the NW Iberi plex zone re Mineralisatic onic Variscan n two primar osted style is ineralisation ted exclusive	logranite). nain focus o an Peninsu presented I on is hosted granitoids. y forms: qu s the most was the m ly within th	Quartz-vein of historic mini la, western Va oy an allochth within a 7.5k artz vein-host prevalent, occ ain focus of h
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Mate drill holes: 	annound rial • Drill hole	ar information fr ement 27/05/19 e information fro e information fro). m 2019 drill pro	ogramme cor	ntained in this		ncement.
\square	• easting and northing of the drill hole collar		e ID Easting	Northing	Elevation	Azimuth	Dip	Hole depth
	\circ elevation or RL (Reduced Level – elevation	21DI	00001 514,565.9	_	419.71	288	-60	163.70
	above sea level in metres) of the drill hole collar	21DI	00002 514,562.3	4,771,103.28	419.33	288	-45	157.75
	 dip and azimuth of the hole 	2100	00003 514,563.0	5 4,771,103.01	418.90	288	-65	125.10
\sum	 down hole length and interception depth 	2100	00004 514,564.7	4,771,259.31	419.70	288	-45	152.00
\Box	 hole length. 		00005 514,543.8	4,771,149.25	420.33	288	-45	54.45
	 If the exclusion of this information is justified on the basis that the information is not Material and this 	21DI	00006 514,561.9	98 4,771,137.69	420.20	288	-60	117.40
	basis that the information is not Material and this exclusion does not detract from the understanding		00007 514,552.8		420.75	288	-62	40.60
	the report, the Competent Person should clearly exp	- 2101	00008 514,580.6		419.33	288	-60	206.40
	why this is the case.	2101	00009 514,552.2		420.93	288	-45	180.00
	why this is the case.		00010 514,613.5		420.01	288	-45	210.10
2			00011 514,563.0	4,771,186.26	419.68	288	-60	98.10
\hat{D}			00012 514,572.6		420.22	288	-55	206.65
9		21DI		67 4,771,054.42	420.22 419.57	288 288	-45	206.65 63.20
2		21DI 21DI 20G	00012 514,572.6 00013 514,587.6 F003 514,530.7	67 4,771,054.42 79 4,771,528.04				-
		21DI 21DI 20G	00012 514,572.6 00013 514,587.6	67 4,771,054.42 79 4,771,528.04	419.57	288	-45	63.20

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted average grades were calculated for intervals >0.05% WO₃. A maximum of 6m of internal dilution allowed. No top-cuts were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'downhole length, true width not known'). 	 Drill holes inclined so as to get as near to perpendicular intersections as possible. Downhole lengths reported. True widths estimated individually in 2021 programme due to the various inclination angles for the drill holes and based on based on interpreted orientation of mineralisation by means of detailed cross sections.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 A plan and cross sections of the main interpreted zones and drillholes is included in t report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 For previous drill programmes refer to ASX announcement dated 1 July 2020. All information considered material to understanding the exploration results have be reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No meaningful and material exploration data other than from 2015-2016 and 209- 2020 drill campaigns have been included in the report.

her work	•	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling 	•	The next phase of drilling is currently underway, focussing of conversion of Inferred resource in mainly downward extensions of the mineralised zones. Pit optimisations from the previously reported mineral resource estimate and pre-feasibility study included in ASX announcements dated 1 July 2020 and 2 December 2020 respectively are
		areas, provided this information is not commercially sensitive.		being used to assist with this targeting.